Folding 3-Noncrossing RNA Pseudoknot Structures

نویسندگان

  • Fenix W. D. Huang
  • Wade W. J. Peng
  • Christian M. Reidys
چکیده

In this article, we present the novel ab initio folding algorithm cross, which generates minimum free energy (mfe), 3-noncrossing, canonical RNA structures. Here an RNA structure is 3-noncrossing if it does not contain three or more mutually crossing arcs and canonical, if each of its stacks has size greater or equal than two. Our notion of mfe-structure is based on a specific concept of pseudoknots and respective loop-based energy parameters. The algorithm decomposes into three subroutines: first the inductive construction of motifs and their associated shadows, second the generation of the (rooted) skeleta-trees and third the saturation of the skeleta via context dependent dynamic programming routines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central and local limit theorems for RNA structures.

A k-noncrossing RNA pseudoknot structure is a graph over {1,...,n} without 1-arcs, i.e. arcs of the form (i,i+1) and in which there exists no k-set of mutually intersecting arcs. In particular, RNA secondary structures are 2-noncrossing RNA structures. In this paper we prove a central and a local limit theorem for the distribution of the number of 3-noncrossing RNA structures over n nucleotides...

متن کامل

$k$-noncrossing RNA structures with arc-length $\ge 3$

In this paper we enumerate k-noncrossing RNA pseudoknot structures with given minimum arc-and stack-length. That is, we study the numbers of RNA pseudoknot structures with arc-length ≥ 3, stack-length ≥ σ and in which there are at most k − 1 mutually crossing bonds, denoted by T [3] k,σ (n). In particular we prove that the numbers of 3, 4 and 5-noncrossing RNA structures with arc-length ≥ 3 and...

متن کامل

Combinatorics of RNA structures with pseudoknots.

In this paper, we derive the generating function of RNA structures with pseudoknots. We enumerate all k-noncrossing RNA pseudoknot structures categorized by their maximal sets of mutually intersecting arcs. In addition, we enumerate pseudoknot structures over circular RNA. For 3-noncrossing RNA structures and RNA secondary structures we present a novel 4-term recursion formula and a 2-term recu...

متن کامل

RNA-LEGO: Combinatorial Design of Pseudoknot RNA

In this paper we enumerate k-noncrossing RNA pseudoknot structures with given minimum stack-length. We show that the numbers of k-noncrossing structures without isolated base pairs are significantly smaller than the number of all k-noncrossing structures. In particular we prove that the number of 3and 4-noncrossing RNA structures with stack-length ≥ 2 is for large n given by 311.2470 4! n(n−1)....

متن کامل

Random K-noncrossing RNA structures.

In this paper, we introduce a combinatorial framework that provides an interpretation of RNA pseudoknot structures as sampling paths of a Markov process. Our results facilitate a variety of applications ranging from the energy-based sampling of pseudoknot structures as well as the ab initio folding via hidden Markov models. Our main result is an algorithm that generates RNA pseudoknot structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational biology : a journal of computational molecular cell biology

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 2009